The year is 1601. You and your buddies have invested heavily and bought a new
sleek ship which you all agreed deserved the name Helena. You are all pumped
to sail the world, to meet new people and to see new places.
Having prepared everything, you are on the final step of doing calculations to
guarantee the safe navigation of Helena and you come down to the
expression $ 197598759 \times 84738549 $ that needs to be evaluated.
Unfortunately, you all really suck at multiplication, logarithms are yet to be
invented and you’re stuck. Oh, no! What do you do?
The Solution
Now, if you may forgive the rather fictatious depiction of you and your buddies,
this was interestingly a problem that sailors and mathematicians faced pre-logarithms
invention – that of estimating products. To solve their problems,
they came up with an ingenious way of relating products to trigonometric identities,
known as prosthaphaeresis.
We recently covered an article on how
to derive trigonometric identities and in it, we came across the following identities,
Clearly, this may serve as a way to reduce difficult multiplication problems
to calculating sums, differences and the easy division by two if we can
tame any values $ x, y $ to be constrained in the domain $ -1 \leq x, y \leq 1 $
(the domain of cosine and sine trigonometric functions).
Luckily, we can always rewrite any numbers in the scientific notation but this
time with a twist – we force the coefficient to be within the range of
$ -1 $ and $ 1 $. Using the numbers we came across earlier, we have,
Now the problem comes down to calculating $ 0.197598759 \times 0.84738549 $ and without loss of
generality, we can relate the problem to the identity $ (2) $ above. Therefore, we let,
importmath# Convert a value x to the notation a * 10^b# where a <= 1. Note that we require x > -1;defscale_coefficient(x:float)->(float,float):assertx>-1exponent=0whilex>1:x/=10exponent+=1return(x,exponent)defprosthaphaeresis(a:float,b:float)->float:sign=1ifa<0:a=math.abs(a)sign=-1ifb<0:b=math.abs(b)sign*=-1a_scaled,a_exp=scale_coefficient(a)b_scaled,b_exp=scale_coefficient(b)a_cos_inverse=math.acos(a_scaled)b_cos_inverse=math.acos(b_scaled)return(sign*(math.cos(a_cos_inverse+b_cos_inverse)+math.cos(a_cos_inverse-b_cos_inverse))/2.0*math.pow(10,a_exp+b_exp))if__name__=='__main__':print(prosthaphaeresis(197598759,84738549))
#include<cassert>#include<cmath>#include<iostream>// Convert a value x to the notation a * 10^b
// where a <= 1. Note that we require x > -1;
std::pair<double,unsignedint>scaleCoefficient(doublex){assert(x>-1);intexponent=0;while(x>1){x/=10;exponent+=1;}returnstd::make_pair(x,exponent);}doubleprosthaphaeresis(doublea,doubleb){intsign=1;if(a<0){a=std::abs(a);sign=-1;}if(b<0){b=std::abs(b);sign*=-1;}autoaScaled=scaleCoefficient(a);autobScaled=scaleCoefficient(b);autoaCosInverse=std::acos(aScaled.first);autobCosInverse=std::acos(bScaled.first);return(sign*(std::cos(aCosInverse+bCosInverse)+std::cos(aCosInverse-bCosInverse))/2.0*std::pow(10,aScaled.second+bScaled.second));}intmain(){std::cout<<prosthaphaeresis(197598759,84738549);return0;}
publicclassMain{privateclassPair<K,V>{privateKkey;privateVvalue;Pair(Kkey,Vvalue){this.key=key;this.value=value;}publicKgetKey(){returnthis.key;}publicVgetValue(){returnthis.value;}}// Convert a value x to the notation a * 10^b
// where a <= 1. Note that we require x > -1;
privatePair<Double,Integer>scaleCoefficient(Doublex){assertx>-1;intexponent=0;while(x>1){x/=10;++exponent;}returnnewPair<>(x,exponent);}privatedoubleprosthaphaeresis(doublea,doubleb){intsign=1;if(a<0){a=Math.abs(a);sign=-1;}if(b<0){b=Math.abs(b);sign*=-1;}Pair<Double,Integer>aScaled=scaleCoefficient(a);Pair<Double,Integer>bScaled=scaleCoefficient(b);doubleaCosInverse=Math.acos(aScaled.getKey());doublebCosInverse=Math.acos(bScaled.getKey());return(sign*(Math.cos(aCosInverse+bCosInverse)+Math.cos(aCosInverse-bCosInverse))/2.0*Math.pow(10,aScaled.getValue()+bScaled.getValue()));}publicstaticvoidmain(String[]args){Mainrunner=newMain();System.out.println(runner.prosthaphaeresis(197598759,84738549));}}